Содержание

Каталог радиолюбительских схем

Я радиолюбитель

Внимание ртутные антенны !!!. Часть вторая.

Вчера в инете нашел эту статью. Адрес: http://rw6afn.chat.ru/r_ant.htm. Это по поводу авторских прав.
В конце вроде как написано - продолжение следует и далее полная тишина. Конечно многое, вернее ВСЕ в этой стстье слухи. Между тем я уже лет десять (или девять?..) пользуюсь антенной на основе красной ртути.
Но все по порядку. Здесь приводится полный текст вышеназванной статьи.

К сожалению программа и управление осуществляется от старого-старого "Синклера". С IBM-мовской платформой я так и не освоился

Диаграмма направленности антенны сохраняется в диапазоне частот с перекрытием fmax/fmin = 2. 2,5 Характеристика направленности антенны симметрична относительно плоскости расположения ее проводников.

Для увеличения направленности данной антенны применяют специальную программу управления текучестью красной ртути, позволяющую сфазировать падающую на него часть энергии в сторону первого детектора поля. В плоскости "полотна" антенны фаза напряженности поля должна быть близка к фазе поля, излучаемого самим полотном, тогда сложение синфазных полей излучаемого и отраженного сигналов увеличивает коэффициент направленного действия (КНД) антенны в десятки раз!!! Фаза отраженного поля зависит от формы и размеров "столбиков" красной ртути, но, главным образом, и от расстояния между ним и полотном антенны, вернее, что одно и тоже - перпендикуляров между "столбиками".

Так, напимер, в диапазонах частот 890...960 МГц для GSM-900 антенна имеет коэффициент бегущей волны (КБВ) не хуже 0,97 и КНД не хуже 47 дБ по сравнению с полуволновым диполем. В диапазоне частот 1710...1880 МГц КБВ антенны не хуже 0,95, а КНД - не хуже 46 дБ.

Жучки в кабинете Фиделя Кастро мы не услышим, но зону покрытия сотовой связи в 3...4 раза получаем свободно.

Конструкция антенны ясна из рисунка.

Антенна состоит из 12 одинаковых полых герметичных U-образных диполей, объединенных в сотувую структуру. Внутри этих диполей залита красная ртуть. Ввиду ее сверхтекучести достаточно 5...10 мг на диполь. Желательно воздух внутри диполей заменить инертным газом или просто азотом. Но я этого сразу не сделал. и пока все работает, ничего не окислилось.

По центру U-образных диполей расположены генераторы накачки, работающие в СВЧ диаппазоне, билизком к гармоникам резонансных частот молекул красной ртути.

Как известно красная ртуть - это, в основном раствор фосфористых соединений в ртути. Благодаря активности фосфора и текучести ртути это вещество имеет очень большую силу поверхностного натяжения (примернов 10 000...20 000 раз боле, чем у воды) и, следовательно, легко растекается вплоть до толщины слоя в 200...300 молекул (!!!), т. е. практически невидимого слоя.

На этом и основан принцип действия ртутной антенны. Подобрав амлитуду напряжения генератора накачки мы можем регулировать длинну столба в герметичных коленах U-образных диполей Установив двухтактный генератор накачки и регулируя фазовое значение его амплитуды можно регулировать с очень большой точностью высоту столбов красной ртути независимо в кажом из колен U-образного диполя.

U-образный диполь изготавливается из листового поликарбоната толщиной 2 мм.

Листовой поликарбонат - самый прочный из всех заменителей стекла. Поликарбонат – прозрачный пластик, легкий и в 200 раз более прочный, чем стекло, и в 8 раз прочнее ПВХ и акрилового пластика. Поликарбонат обладает низкой теплопроводностью. Хорошие оптические свойства поликарбоната при полной радиопрозрачности, панели которого обладают высокой светопроводимостью и не дают искажение при прохождении радиоволн, делают данный материал оптимальным для использовании в конструкциях антенн. Антенны из поликарбоната более долговечны, хотя и дороже, чем продукция из аналогичных материалов. Лист поликарбоната весит намного меньше, чем аналогичный лист из акрила или ПВХ. Он легко обрабатывается с помощью термопистолета.

Всю конструкцию U-образного диполя можно разделить на три элемента - две стойки и основание колена. Для изготовления вытачивают три оправки из легкообрабатываемого металла, например алюминия. Далее, нагревая листовой поликарбонат тепловым пистолетом формуют на оправке соответствующий элемент. После формовки начало и конец сваривают в трубу. место сварки тщательно зачищают и потом зашлифовывают.

Ниже приведены чертежи одного U-образного диполя


Единственная трудность заключается в калибровке такого U-образного диполя. Ее приходится делать отдельно для каждого диполя. При этом напряжение на входе генератора накачки и на входе фазового управления должно выдерживаться с точность до 1..5 мВ в широком диаппазоне нагрузок и температур. Ну да об источнике питания я напишу отдельно, он похоже самый трудоемкий в изготовлении, так как его внутреннее сопративление должно стремиться к нулю.

Далее все просто. Берем книгу Зиновия Шера "Антенные решетки и сотовые антенные структуры в формулах" тупо сдираем оттуда формулу расчета диаграммы направленности тройной счетверенной U-образной антенной решетки и забиваем в программу Синклера. 48К вполне хватает для управления антенной в любом диаппазоне сотовой связи.

Программа приведена ниже:

Антенная решетка фокусирует сигнал на обычную антенну.

Основной расчетный параметр определяет рабочую частоту антенны. Для тройной счетверенной U-образной антенной решетки коэффициент направленного действия - КНД оказывается максимальным при \/\/= 0,4.

Максимальный КБВ = 0,98 достигается при отношениях \/\/ = 0,25...0,5. КБВ составляет величину не менее 0,9. Поэтому для средней частоты рабочего диапазона антенны была выбрана величина L = 80 мм, при этом = L / /\ ~0.37.

Помимо L, на величину КБВ влияют ширина вибраторов антенны d и расстояние от полотна антенны до певого детектора. Обычно рекомендуется выбирать d = 0,033/\.max,, где /\.max - максимальная длина волны рабочего диапазона антенны.

В нашем случае d - 10 мм. С точки зрения повышения КНД антенны расстояние до рефлектора желательно уменьшать, а с точки зрения согласования - увеличивать. В данной конструкции оно составляет 45 мм, что обеспечивает указанные выше характеристики антенны.

Полотно антенны 1 и первый детектор 2 изготовлены из односторонне фольгированного фторопласта марки ФФ-1 толщиной 1...1.5 мм.

Полотно антенны образовано двумя симметричными квадратными ячейками, которые вырезаются из фольгированного фторопласта с внешней стороны по контуру антенны. Внутренний контур зигзагообразной антенны процарапывается резаком со стороны фольги, после чего фольга изнутри контура антенны удаляется.

Для облегчения процесса удаления фольги ее можно предварительно прогреть мощным паяльником. При желании можно удалить и большую часть диэлектрика внутри контура антенны.

Антенна питается коаксиальным кабелем с волновым сопротивлением 50 Ом. К точке Б припаивают центральный проводник кабеля, освобожденный от экранирующей оплетки, а к точке А - оплетку (экран).

Кабель прокладывают вдоль вибраторов, образующих одну из сторон ячейки антенны, и выводят через точку нулевого потенциала антенного полотна П. Для крепления кабеля применяют расплавленный поликарбонат. Далее кабель закрепляют на стойке и выводят через отверстие. К концу фидера припаивают разъем FME 740, к которому привинчивается переходник (антенный адаптер, его можно приобрести а салонах сотовой связи) под разъем внешней антенны сотового телефона.

Следует отметить, что величина КБВ сильно зависит от типа применяемого коаксиального кабеля. Как правило, чем тоньше кабель, тем больше его затухание, что ухудшает характеристики антенны. В то же время тонкий кабель при подсоединении его к телефонному аппарату меньше сковывает движения абонента, такой кабель удобнее подключать к антенному адаптеру. В общем случае, если расстояние от точки, в которой антенна обеспечивает приемлемое качество сигнала, до места расположения телефонного аппарата составляет не более 2...4 м (например, антенна располагается внутри помещения у окна), то можно использовать более тонкий кабель с полиэтиленовым диэлектриком (например РК 50-1,5-11).

Для работы с антенной, перед подачей напряжения питания, антенну направляют вертикально вверх, чтобы вся красная ртуть стекла вниз к генераторам накачки. Далее включают напряжение питания и дают прогреться системе 5...10 секунд. полезно на всякий случай легко встряхнуть антенну.

После этого включают компьютер и переворачивают антенну в рабочее положение. Для более четкого определения направления в основании антенны укреплен компас.

Часть третья. Методика настройки и работы ртутной антенны и фотографии

Далее я расскажу о свойствах красной ртути. Стоит ее изготовление недорого. получить ее тоже довольно нетрудно. Единственная проблемма - ее хранение. За счет сверхтекучести и повышенных силповерхностного натяжения известны случаи протекания сквозь поры химической керамической посуды. Ну об этом далее.

Часть четвертая. Свойства, использование и получение красной ртути

Rambler's Top100
Рейтинг@Mail.ru
Rambler's Top100
Содержание

© Каталог радиолюбительских схем

Все права защищены. Радиолюбительская страница.
Перепечатка разрешается только с указанием ссылки на данный сайт.
Пишите нам. E-mail: irls@yandex.ru или irlks@mail.ru.
Я радиолюбитель
Hosted by uCoz